Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37833883

RESUMO

Ribotoxin-like proteins (RL-Ps) are specific ribonucleases found in mushrooms that are able to cleave a single phosphodiester bond located in the sarcin-ricin loop (SRL) of the large rRNA. The cleaved SRL interacts differently with some ribosomal proteins (P-stalk). This action blocks protein synthesis because the damaged ribosomes are unable to interact with elongation factors. Here, the amino acid sequences of eryngitin 3 and 4, RL-Ps isolated from Pleurotus eryngii fruiting bodies, were determined to (i) obtain structural information on this specific ribonuclease family from edible mushrooms and (ii) explore the structural determinants which justify their different biological and antipathogenic activities. Indeed, eryngitin 3 exhibited higher toxicity with respect to eryngitin 4 against tumoral cell lines and model fungi. Structurally, eryngitin 3 and 4 consist of 132 amino acids, most of them identical and exhibiting a single free cysteinyl residue. The amino acidic differences between the two toxins are (i) an additional phenylalanyl residue at the N-terminus of eryngitin 3, not retrieved in eryngitin 4, and (ii) an additional arginyl residue at the C-terminus of eryngitin 4, not retrieved in eryngitin 3. The 3D models of eryngitins show slight differences at the N- and C-terminal regions. In particular, the positive electrostatic surface at the C-terminal of eryngitin 4 is due to the additional arginyl residue not retrieved in eryngitin 3. This additional positive charge could interfere with the binding to the SRL (substrate) or with some ribosomal proteins (P-stalk structure) during substrate recognition.


Assuntos
Agaricales , Ascomicetos , Pleurotus , Ricina , Endorribonucleases/metabolismo , Proteínas Fúngicas/metabolismo , Pleurotus/metabolismo , Ribonucleases/química , Agaricales/química , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/análise , Ricina/metabolismo , Ascomicetos/metabolismo , Carpóforos/química
2.
Protein Sci ; 32(4): e4621, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36905289

RESUMO

We have purified ledodin, a cytotoxic 22-kDa protein from shiitake mushroom (Lentinula edodes) consisting of a 197 amino acid chain. Ledodin possessed N-glycosylase activity on the sarcin-ricin loop of mammalian 28S rRNA and inhibited protein synthesis. However, it was not active against insect, fungal, and bacterial ribosomes. In vitro and in silico studies suggested that ledodin exhibits a catalytic mechanism like that of DNA glycosylases and plant ribosome-inactivating proteins. Moreover, the sequence and structure of ledodin was not related to any protein of known function, although ledodin-homologous sequences were found in the genome of several species of fungi, some edible, belonging to different orders of the class Agaricomycetes. Therefore, ledodin could be the first of a new family of enzymes widely distributed among this class of basidiomycetes. The interest of these proteins lies both, in the fact that they can be a toxic agent of some edible mushrooms and in their application in medicine and biotechnology.


Assuntos
Cogumelos Shiitake , Animais , Saporinas , Cogumelos Shiitake/genética , Cogumelos Shiitake/química , Mamíferos
3.
Toxins (Basel) ; 15(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36668855

RESUMO

After more than 50 years of research, studies on the structure and biological activities of ribosome-inactivating proteins (RIPs) continue to provide a field of great interest within the scientific community, both for the health risks they pose and their applications in medicine and biotechnology [...].


Assuntos
Proteínas Inativadoras de Ribossomos , Ribossomos , Proteínas Inativadoras de Ribossomos/química , Ribossomos/metabolismo , Proteínas de Plantas/metabolismo
4.
Toxins (Basel) ; 14(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36136551

RESUMO

Ribosome-inactivating proteins (RIPs) are a group of proteins with rRNA N-glycosylase activity that catalyze the removal of a specific adenine located in the sarcin-ricin loop of the large ribosomal RNA, which leads to the irreversible inhibition of protein synthesis and, consequently, cell death. The case of elderberry (Sambucus nigra L.) is unique, since more than 20 RIPs and related lectins have been isolated and characterized from the flowers, seeds, fruits, and bark of this plant. However, these kinds of proteins have never been isolated from elderberry leaves. In this work, we have purified RIPs and lectins from the leaves of this shrub, studying their main physicochemical characteristics, sequences, and biological properties. In elderberry leaves, we found one type 2 RIP and two related lectins that are specific for galactose, four type 2 RIPs that fail to agglutinate erythrocytes, and one type 1 RIP. Several of these proteins are homologous to others found elsewhere in the plant. The diversity of RIPs and lectins in the different elderberry tissues, and the different biological activities of these proteins, which have a high degree of homology with each other, constitute an excellent source of proteins that are of great interest in diagnostics, experimental therapy, and agriculture.


Assuntos
Ricina , Sambucus nigra , Sambucus , Adenina , Sequência de Aminoácidos , Galactose , N-Glicosil Hidrolases/genética , Folhas de Planta/metabolismo , Lectinas de Plantas/farmacologia , Proteínas de Plantas/genética , Plantas/metabolismo , RNA Ribossômico , Proteínas Inativadoras de Ribossomos/metabolismo , Proteínas Inativadoras de Ribossomos/farmacologia , Ribossomos/metabolismo , Ricina/metabolismo , Sambucus nigra/genética , Sambucus nigra/metabolismo
5.
Toxins (Basel) ; 14(8)2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-36006228

RESUMO

Ribosome-inactivating proteins (RIPs) are known as RNA N-glycosylases. They depurinate the major rRNA, damaging ribosomes and inhibiting protein synthesis. Here, new single-chain (type-1) RIPs named sodins were isolated from the seeds (five proteins), edible leaves (one protein) and roots (one protein) of Salsola soda L. Sodins are able to release Endo's fragment when incubated with rabbit and yeast ribosomes and inhibit protein synthesis in cell-free systems (IC50 = 4.83-79.31 pM). In addition, sodin 5, the major form isolated from seeds, as well as sodin eL and sodin R, isolated from edible leaves and roots, respectively, display polynucleotide:adenosine glycosylase activity and are cytotoxic towards the Hela and COLO 320 cell lines (IC50 = 0.41-1200 nM), inducing apoptosis. The further characterization of sodin 5 reveals that this enzyme shows a secondary structure similar to other type-1 RIPs and a higher melting temperature (Tm = 76.03 ± 0.30 °C) and is non-glycosylated, as other sodins are. Finally, we proved that sodin 5 possesses antifungal activity against Penicillium digitatum.


Assuntos
Salsola , Sequência de Aminoácidos , Animais , Células HeLa , Humanos , N-Glicosil Hidrolases/química , Proteínas de Plantas/química , Coelhos , Proteínas Inativadoras de Ribossomos/metabolismo , Proteínas Inativadoras de Ribossomos/farmacologia , Proteínas Inativadoras de Ribossomos Tipo 1 , Ribossomos/metabolismo , Salsola/metabolismo
6.
Int J Mol Sci ; 23(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35054864

RESUMO

Penicillium digitatum is a widespread pathogen responsible for the postharvest decay of citrus, one of the most economically important crops worldwide. Currently, chemical fungicides are still the main strategy to control the green mould disease caused by the fungus. However, the increasing selection and proliferation of fungicide-resistant strains require more efforts to explore new alternatives acting via new or unexplored mechanisms for postharvest disease management. To date, several non-chemical compounds have been investigated for the control of fungal pathogens. In this scenario, understanding the molecular determinants underlying P. digitatum's response to biological and chemical antifungals may help in the development of safer and more effective non-chemical control methods. In this work, a proteomic approach based on isobaric labelling and a nanoLC tandem mass spectrometry approach was used to investigate molecular changes associated with P. digitatum's response to treatments with α-sarcin and beetin 27 (BE27), two proteins endowed with antifungal activity. The outcomes of treatments with these biological agents were then compared with those triggered by the commonly used chemical fungicide thiabendazole (TBZ). Our results showed that differentially expressed proteins mainly include cell wall-degrading enzymes, proteins involved in stress response, antioxidant and detoxification mechanisms and metabolic processes such as thiamine biosynthesis. Interestingly, specific modulations in response to protein toxins treatments were observed for a subset of proteins. Deciphering the inhibitory mechanisms of biofungicides and chemical compounds, together with understanding their effects on the fungal physiology, will provide a new direction for improving the efficacy of novel antifungal formulations and developing new control strategies.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Penicillium/efeitos dos fármacos , Espectrometria de Massas em Tandem , Antioxidantes/metabolismo , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Cromatografia Líquida , Endorribonucleases/farmacologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/farmacologia , Testes de Sensibilidade Microbiana , Penicillium/crescimento & desenvolvimento , Proteômica , Tiabendazol/farmacologia
7.
Toxins (Basel) ; 13(12)2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34941700

RESUMO

Kirkiin is a new type 2 ribosome-inactivating protein (RIP) purified from the caudex of Adenia kirkii with a cytotoxicity compared to that of stenodactylin. The high toxicity of RIPs from Adenia genus plants makes them interesting tools for biotechnology and therapeutic applications, particularly in cancer therapy. The complete amino acid sequence and 3D structure prediction of kirkiin are here reported. Gene sequence analysis revealed that kirkiin is encoded by a 1572 bp open reading frame, corresponding to 524 amino acid residues, without introns. The amino acid sequence analysis showed a high degree of identity with other Adenia RIPs. The 3D structure of kirkiin preserves the overall folding of type 2 RIPs. The key amino acids of the active site, described for ricin and other RIPs, are also conserved in the kirkiin A chain. Sugar affinity studies and docking experiments revealed that both the 1α and 2γ sites of the kirkiin B chain exhibit binding activity toward lactose and D-galactose, being lower than ricin. The replacement of His246 in the kirkiin 2γ site instead of Tyr248 in ricin causes a different structure arrangement that could explain the lower sugar affinity of kirkiin with respect to ricin.


Assuntos
Sequência de Aminoácidos , Sítios de Ligação , Proteínas Inativadoras de Ribossomos Tipo 2/química , Proteínas Inativadoras de Ribossomos Tipo 2/genética , Domínio Catalítico , Simulação de Acoplamento Molecular , Passifloraceae/química , Passifloraceae/genética , Proteínas de Plantas/química , Domínios Proteicos , Ricina/química , Análise de Sequência de DNA
8.
Toxins (Basel) ; 13(2)2021 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573355

RESUMO

Ebulin l is an A-B toxin, and despite the presence of a B chain, this toxin displays much less toxicity to cells than the potent A-B toxin ricin. Here, we studied the binding, mechanisms of endocytosis, and intracellular pathway followed by ebulin l and compared it with ricin. COS-1 cells and HeLa cells with inducible synthesis of a mutant dynamin (K44A) were used in this study. The transport of these toxins was measured using radioactively or fluorescently labeled toxins. The data show that ebulin l binds to cells to a lesser extent than ricin. Moreover, the expression of mutant dynamin does not affect the endocytosis, degradation, or toxicity of ebulin l. However, the inhibition of clathrin-coated pit formation by acidification of the cytosol reduced ebulin l endocytosis but not toxicity. Remarkably, unlike ricin, ebulin l is not transported through the Golgi apparatus to intoxicate the cells and ebulin l induces apoptosis as the predominant cell death mechanism. Therefore, after binding to cells, ebulin l is taken up by clathrin-dependent and -independent endocytosis into the endosomal/lysosomal system, but there is no apparent role for clathrin and dynamin in productive intracellular routing leading to intoxication.


Assuntos
Apoptose/efeitos dos fármacos , Vesículas Revestidas por Clatrina/metabolismo , Clatrina/metabolismo , Dinaminas/metabolismo , Endocitose , Proteínas Inativadoras de Ribossomos Tipo 2/metabolismo , Proteínas Inativadoras de Ribossomos Tipo 2/toxicidade , Animais , Células COS , Chlorocebus aethiops , Dinaminas/genética , Células HeLa , Humanos , Mutação , Transporte Proteico , Proteólise , Ricina/metabolismo
9.
Toxins (Basel) ; 13(2)2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499086

RESUMO

Ribosome-inactivating proteins (RIPs) are rRNA N-glycosylases from plants (EC 3.2.2.22) that inactivate ribosomes thus inhibiting protein synthesis. The antiviral properties of RIPs have been investigated for more than four decades. However, interest in these proteins is rising due to the emergence of infectious diseases caused by new viruses and the difficulty in treating viral infections. On the other hand, there is a growing need to control crop diseases without resorting to the use of phytosanitary products which are very harmful to the environment and in this respect, RIPs have been shown as a promising tool that can be used to obtain transgenic plants resistant to viruses. The way in which RIPs exert their antiviral effect continues to be the subject of intense research and several mechanisms of action have been proposed. The purpose of this review is to examine the research studies that deal with this matter, placing special emphasis on the most recent findings.


Assuntos
Antivirais/farmacologia , Controle Biológico de Vetores , Doenças das Plantas/prevenção & controle , Plantas Geneticamente Modificadas/enzimologia , Inibidores da Síntese de Proteínas/farmacologia , Proteínas Inativadoras de Ribossomos/farmacologia , Toxinas Biológicas/farmacologia , Viroses/tratamento farmacológico , Vírus/efeitos dos fármacos , Animais , Antivirais/isolamento & purificação , Humanos , Doenças das Plantas/genética , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/virologia , Inibidores da Síntese de Proteínas/isolamento & purificação , Proteínas Inativadoras de Ribossomos/isolamento & purificação , Toxinas Biológicas/isolamento & purificação , Viroses/metabolismo , Viroses/virologia , Vírus/metabolismo , Vírus/patogenicidade
10.
Toxins (Basel) ; 12(9)2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825611

RESUMO

Stenodactylin is one of the most potent type 2 ribosome-inactivating proteins (RIPs); its high toxicity has been demonstrated in several models both in vitro and in vivo. Due to its peculiarities, stenodactylin could have several medical and biotechnological applications in neuroscience and cancer treatment. In this work, we report the complete amino acid sequence of stenodactylin and 3D structure prediction. The comparison between the primary sequence of stenodactylin and other RIPs allowed us to identify homologies/differences and the amino acids involved in RIP toxic activity. Stenodactylin RNA was isolated from plant caudex, reverse transcribed through PCR and the cDNA was amplificated and cloned into a plasmid vector and further analyzed by sequencing. Nucleotide sequence analysis showed that stenodactylin A and B chains contain 251 and 258 amino acids, respectively. The key amino acids of the active site described for ricin and most other RIPs are also conserved in the stenodactylin A chain. Stenodactylin amino acid sequence shows a high identity degree with volkensin (81.7% for A chain, 90.3% for B chain), whilst when compared with other type 2 RIPs the identity degree ranges from 27.7 to 33.0% for the A chain and from 42.1 to 47.7% for the B chain.


Assuntos
Lectinas/química , Lectinas/genética , N-Glicosil Hidrolases/química , N-Glicosil Hidrolases/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Toxinas Biológicas/química , Toxinas Biológicas/genética , Sequência de Aminoácidos , Previsões , Filogenia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
11.
Int J Biol Macromol ; 155: 1226-1235, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31726122

RESUMO

Ageritin, a specific ribonuclease, damaging the largest rRNA in the highly conserved α-sarcin/ricin stem-loop (SRL) has been well characterized from edible mushroom Agrocybe aegerita. Given its peculiar characteristic, Ageritin is the prototype of a new ribotoxins family expressed in basidiomycetes. In this framework, we report the characterization of Met-Ageritin, an isoform of Ageritin with an additional N-terminal methionyl residue. This difference affects the enzymatic features of this toxin despite is able to release α-fragment when acting on yeast, rabbit or Trichoderma asperellum ribosomes. Met-Ageritin inhibits protein synthesis in vitro with an IC50 = 2.8 nM that is 21-fold lower than that of Ageritin, while not show endonuclease activity on DNA. Subsequently, we explored the antifungal activity of both isoforms against T. asperellum, pathogen for A. aegerita and Saccharomyces cerevisiae, used as eukaryotic model microorganism. The presence of an additional N-terminal methionyl residue in Met-Ageritin abolishes antifungal activity towards T. asperellum, while neither of two isoforms is able to inhibit the growth of S. cerevisiae. Overall, these data highlight the importance of the N-terminal region of this toxin that likely alters the conformational state of this enzyme considering the presence in this region of metal binding sites necessary for explicate enzymatic activity.


Assuntos
Agrocybe/química , Antifúngicos/farmacologia , Ribonucleases/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Carpóforos/química , Conformação Proteica , Ribonucleases/química , Ribonucleases/isolamento & purificação
12.
ACS Chem Biol ; 14(6): 1319-1327, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31136705

RESUMO

Ribotoxins make up a group of extracellular rRNA endoribonucleases produced by ascomycetes that display cytotoxicity toward animal cells, having been proposed as insecticidal agents. Recently, the ribotoxin Ageritin has been isolated from the basidiomycetes Agrocybe aegerita (poplar mushroom), suggesting that ribotoxins are widely distributed among fungi. To gain insights into the protective properties of Ageritin against pathogens and its putative biotechnological applications, we have tested several biological activities of Ageritin, comparing them with those of the well-known ribotoxin α-sarcin, and we found that Ageritin displayed, in addition to the already reported activities, (i) antibacterial activity against Micrococcus lysodeikticus, (ii) activity against the tobacco mosaic virus RNA, (iii) endonuclease activity against a supercoiled plasmid, (iv) nuclease activity against genomic DNA, (v) cytotoxicity to COLO 320, HeLa, and Raji cells by promoting apoptosis, and (vi) antifungal activity against the green mold Penicillium digitatum. Therefore, Ageritin and α-sarcin can induce resistance not only to insects but also to viruses, bacteria, and fungi. The multiple biological activities of Ageritin could be exploited to improve resistance to different pathogens by engineering transgenic plants. Furthermore, the induction of cell death by different mechanisms turns these ribotoxins into useful tools for cancer therapy.


Assuntos
Agrocybe/química , Proliferação de Células/efeitos dos fármacos , Citotoxinas/farmacologia , Ribonucleases/farmacologia , Anti-Infecciosos/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Testes de Sensibilidade Microbiana , Micrococcus/efeitos dos fármacos , Ribonucleases/isolamento & purificação , Vírus do Mosaico do Tabaco/efeitos dos fármacos
13.
ACS Chem Biol ; 13(8): 1978-1982, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29952541

RESUMO

Among the putative defense proteins that occur in fungi, one of the best studied is α-sarcin, produced by the mold Aspergillus giganteus. This protein is the most significant member of the ribotoxin family, which consists of extracellular rRNA ribonucleases that display cytotoxic activity toward animal cells. Ribotoxins are rRNA endonucleases that catalyze the hydrolysis of the phosphodiester bond between G4325 and A4326 from the rat 28S rRNA. The results of several experimental approaches have led to propose ribotoxins as insecticidal agents. In this work, we report that α-sarcin displays a strong antifungal activity against Penicillium digitatum, being able to enter into the cytosol where it inactivates the ribosomes, thus killing the cells and arresting the growth of the fungus. This is the first time that a ribotoxin has been found to display antifungal activity. Therefore, this protein could play, besides the already proposed insecticidal function, a role in nature as an antifungal agent.


Assuntos
Antifúngicos/farmacologia , Endorribonucleases/farmacologia , Proteínas Fúngicas/farmacologia , Penicillium/efeitos dos fármacos , Hidrólise , Micélio/efeitos dos fármacos , RNA Ribossômico/efeitos dos fármacos , RNA Ribossômico/metabolismo , Ribossomos/efeitos dos fármacos
14.
Biochim Biophys Acta Gen Subj ; 1862(3): 460-473, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29154940

RESUMO

BACKGROUND: Sambucus ebulus is a rich source of ribosome-inactivating proteins (RIPs) and RIP-related lectins generated from multiple genes. These proteins differ in their structure, enzymatic activity and sugar binding specificity. METHODS: We have purified and characterized ebulin-RP from S. ebulus leaves and determined the amino acid sequence by cDNA cloning. Cytotoxicity was studied in a variety of cancer cells and a comparative study of the ability of ebulin-RP to bind sugars using "in vitro" and "in silico" approaches was performed. RESULTS: Ebulin-RP is a novel heterodimeric type 2 RIP present in S. ebulus leaves together with the type 2 RIP ebulin l, which displayed rRNA N-glycosidase activity but unlike ebulin l, lacked functional sugar binding domains. As a consequence of changes in its B-chain, ebulin-RP displayed lower cytotoxicity than ebulin l towards cancer cells and induced apoptosis as the predominant pattern of cell death. CONCLUSIONS: Ebulin-RP is a novel member of the ebulin gene family with low cytotoxicity as a result of deficient sugar binding domains. Type 2 RIP genes from Sambucus have evolved to render proteins with different sugar affinities that may be related to different biological activities and could result in an advantage for the plant. GENERAL SIGNIFICANCE: The ebulin family of RIPs and lectins can serve as a good model for studying the evolutionary process which may have occurred in RIPs. The lack of cytotoxicity of ebulin-RP makes it a good candidate as a toxic moiety in the construction of immunotoxins and conjugates directed against specific targets.


Assuntos
Citotoxinas/isolamento & purificação , Proteínas Inativadoras de Ribossomos Tipo 2/isolamento & purificação , Sambucus/enzimologia , Açúcares/metabolismo , Sequência de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Sítios de Ligação , Linhagem Celular , Linhagem Celular Tumoral , Sistema Livre de Células , Citotoxinas/química , Citotoxinas/metabolismo , Citotoxinas/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Evolução Molecular , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Modelos Moleculares , Simulação de Acoplamento Molecular , Ácidos Nucleicos/efeitos dos fármacos , Filogenia , Folhas de Planta/enzimologia , Conformação Proteica , Domínios Proteicos , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Proteínas Inativadoras de Ribossomos Tipo 2/química , Proteínas Inativadoras de Ribossomos Tipo 2/metabolismo , Proteínas Inativadoras de Ribossomos Tipo 2/farmacologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
15.
Bio Protoc ; 7(6): e2180, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-34458490

RESUMO

Ribosome-inactivating proteins (RIPs) are enzymes that irreversibly inactivate ribosomes as a consequence of their N-glycosylase (EC 3.2.2.22) activity. The enzyme cleaves the N-glycosidic bond between the adenine No. 4324 from the 28S rRNA and its ribose in rat ribosomes (or the equivalent adenine in sensitive ribosomes from other organisms). This adenine is located in the α-sarcin-ricin loop (SRL) that is crucial for anchoring the elongation factor (EF) G and EF2 on the ribosome during mRNA-tRNA translocation in prokaryotes and eukaryotes, respectively. RIPs have been isolated mainly from plants and examples of these proteins are ricin or Pokeweed Antiviral Protein (PAP). These proteins, either alone or as a part of immunotoxins, are useful tools for cancer therapy. The following protocol describes a method to detect the RNA fragment released when the RIP-treated apurinic RNA from rabbit reticulocyte lysate is incubated in the presence of acid aniline by electrophoresis on polyacrylamide gels. The fragment released (Endo's fragment) is diagnostic of the action of RIPs.

16.
Int J Biol Macromol ; 93(Pt A): 1041-1050, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27659002

RESUMO

Myoglobin (Mb) is studied to clarify the structure-function relationships in protein science. In this work, we report the results of a comparative analysis of amino acid sequences from 298 vertebrate Mbs. Forty-one high conserved residues were identified and seven of them were invariants [E18, G25, F43, V68, L72, H93 (proximal histidine) and H97]. E18 is the only invariant amino acid residue located out of the heme-pocket and Xe-cavities playing a role in interaction between the A and E-helices. A comparative analysis of several parameters related to amino acid composition shows an increase of average mass, accessible surface area and volume per residue from Actinopterygii to Mammalia and Aves. This may be due to an increased number of bulky residues reducing the non-specific cavities volume and thus improving the oxygen flow between the heme site and the outside of the protein. Finally, the phylogenetic analyses of Mb in vertebrates are consistent with an evolution that runs with the diversification of the species, but in which several episodes of gene duplication and lost have occurred, less frequently in the ancestors of great taxons, cartilaginous fishes and non-avian reptiles, most frequently in ray-finned fishes and mammals, and very frequently in birds.


Assuntos
Evolução Molecular , Mioglobina/química , Sequência de Aminoácidos , Animais , Proteínas Aviárias/química , Proteínas Aviárias/genética , Sequência Consenso , Proteínas de Peixes/química , Proteínas de Peixes/genética , Mioglobina/genética , Filogenia , Conformação Proteica , Proteínas de Répteis/química , Proteínas de Répteis/genética , Homologia de Sequência de Aminoácidos , Vertebrados
17.
Biochim Biophys Acta ; 1860(6): 1256-64, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26971856

RESUMO

BACKGROUND: The species from the genus Phytolacca constitute one of the best sources of ribosome-inactivating proteins (RIPs) that have been used both in the therapy against virus and tumors and in the construction of transgenic plants resistant to virus, bacteria, fungi and insects. Here we investigate new activities of three representative RIPs from Phytolacca dioica (dioicin 2, PD-S2 and PD-L4). RESULTS: The three RIPs displayed, in addition to already reported activities, rRNA N-glycosylase activities against plant, bacterial and fungal ribosomes. Additionally dioicin 2 and PD-L4 displayed endonuclease activity on a supercoiled plasmid DNA, and dioicin 2 and PD-S2 arrested the growth of the fungus Penicillium digitatum. Furthermore, dioicin 2 induced caspase activation and apoptosis in cell cultures. CONCLUSIONS: The different activities of the RIPs from Phytolacca dioica may explain the antipathogenic properties attributed to these RIPs in plants and their antiviral and antitumoral effects. In spite of the similarity in their rRNA N-glycosylase and DNA polynucleotide:adenosine glycosylase activities, they differed in their activities against viral RNA, plasmid DNA, fungi and animal cultured cells. This suggests that the presence of isoforms might optimize the response of the plant against several types of pathogens. GENERAL SIGNIFICANCE: RIPs from Phytolacca can induce plant resistance or tumor cell death not only by means of ribosome inactivation but also by the activities found in this report. Furthermore, the induction of cell death by different mechanisms turns these RIPs into more useful tools for cancer treatment rendering the selection of RIP-resistant mutants impossible.


Assuntos
Phytolacca/química , Proteínas Inativadoras de Ribossomos/farmacologia , Sequência de Aminoácidos , Endonucleases/metabolismo , Dados de Sequência Molecular , Penicillium/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Proteínas Inativadoras de Ribossomos/metabolismo
18.
Mol Plant Pathol ; 17(2): 261-71, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25976013

RESUMO

The ribosome-inactivating protein BE27 from sugar beet (Beta vulgaris L.) leaves is an apoplastic protein induced by signalling compounds, such as hydrogen peroxide and salicylic acid, which has been reported to be involved in defence against viruses. Here, we report that, at a concentration much lower than that present in the apoplast, BE27 displays antifungal activity against the green mould Penicillium digitatum, a necrotrophic fungus that colonizes wounds and grows in the inter- and intracellular spaces of the tissues of several edible plants. BE27 is able to enter into the cytosol and kill fungal cells, thus arresting the growth of the fungus. The mechanism of action seems to involve ribosomal RNA (rRNA) N-glycosylase activity on the sarcin-ricin loop of the major rRNA which inactivates irreversibly the fungal ribosomes, thus inhibiting protein synthesis. We compared the C-terminus of the BE27 structure with antifungal plant defensins and hypothesize that a structural motif composed of an α-helix and a ß-hairpin, similar to the γ-core motif of defensins, might contribute to the specific interaction with the fungal plasma membranes, allowing the protein to enter into the cell.


Assuntos
Antifúngicos/farmacologia , Beta vulgaris/metabolismo , Beta vulgaris/microbiologia , Penicillium/fisiologia , Proteínas de Plantas/metabolismo , Proteínas Inativadoras de Ribossomos/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Beta vulgaris/efeitos dos fármacos , Simulação por Computador , Modelos Moleculares , Dados de Sequência Molecular , Penicillium/efeitos dos fármacos , Penicillium/crescimento & desenvolvimento , Proteínas de Plantas/química , Proteínas Inativadoras de Ribossomos/química , Ribossomos/metabolismo
19.
Planta ; 241(2): 421-33, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25326773

RESUMO

MAIN CONCLUSION: The ribosome inactivating protein BE27 displays several biological activities in vitro that could result in a broad action against several types of pathogens. Beetin 27 (BE27), a ribosome-inactivating protein (RIP) from sugar beet (Beta vulgaris L.) leaves, is an antiviral protein induced by virus and signaling compounds such as hydrogen peroxide and salicylic acid. Its role as a defense protein has been attributed to its RNA polynucleotide:adenosine glycosidase activity. Here we tested other putative activities of BE27 that could have a defensive role against pathogens finding that BE27 displays rRNA N-glycosidase activity against yeast and Agrobacterium tumefaciens ribosomes, DNA polynucleotide:adenosine glycosidase activity against herring sperm DNA, and magnesium-dependent endonuclease activity against the supercoiled plasmid PUC19 (nicking activity). The nicking activity could be a consequence of an unusual conformation of the BE27 active site, similar to that of PD-L1, a RIP from Phytolacca dioica L. leaves. Additionally, BE27 possesses superoxide dismutase activity, thus being able to produce the signal compound hydrogen peroxide. BE27 is also toxic to COLO 320 cells, inducing apoptosis in these cells by either activating the caspase pathways and/or inhibiting protein synthesis. The combined effect of these biological activities could result in a broad action against several types of pathogens such as virus, bacteria, fungi or insects.


Assuntos
Beta vulgaris/química , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Agrobacterium/efeitos dos fármacos , Antivirais/química , Antivirais/farmacologia , Folhas de Planta/química , Leveduras/efeitos dos fármacos
20.
Plant Mol Biol ; 85(6): 575-88, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24880476

RESUMO

Ribosome-inactivating proteins (RIPs) from angiosperms are rRNA N-glycosidases that have been proposed as defence proteins against virus and fungi. They have been classified as type 1 RIPs, consisting of single-chain proteins, and type 2 RIPs, consisting of an A chain with RIP properties covalently linked to a B chain with lectin properties. In this work we have carried out a broad search of RIP sequence data banks from angiosperms in order to study their main structural characteristics and phylogenetic evolution. The comparison of the sequences revealed the presence, outside of the active site, of a novel structure that might be involved in the internal protein dynamics linked to enzyme catalysis. Also the B-chains presented another conserved structure that might function either supporting the beta-trefoil structure or in the communication between both sugar-binding sites. A systematic phylogenetic analysis of RIP sequences revealed that the most primitive type 1 RIPs were similar to that of the actual monocots (Poaceae and Asparagaceae). The primitive RIPs evolved to the dicot type 1 related RIPs (like those from Caryophyllales, Lamiales and Euphorbiales). The gene of a type 1 RIP related with the actual Euphorbiaceae type 1 RIPs fused with a double beta trefoil lectin gene similar to the actual Cucurbitaceae lectins to generate the type 2 RIPs and finally this gene underwent deletions rendering either type 1 RIPs (like those from Cucurbitaceae, Rosaceae and Iridaceae) or lectins without A chain (like those from Adoxaceae).


Assuntos
Filogenia , Proteínas de Plantas/química , Proteínas Inativadoras de Ribossomos/química , Sequência de Aminoácidos , Sequência Conservada , Funções Verossimilhança , Magnoliopsida/genética , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Plantas/genética , Estrutura Terciária de Proteína , Proteínas Inativadoras de Ribossomos/genética , Alinhamento de Sequência , Análise de Sequência de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...